Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.
نویسندگان
چکیده
Alternatives for developing chronic exposure limits for noncancer effects of trichloroethylene (TCE) were evaluated. These alternatives were organized within a framework for dose-response assessment--exposure:dosimetry (pharmacokinetics):mode of action (pharmacodynamics): response. This framework provides a consistent structure within which to make scientific judgments about available information, its interpretation, and use. These judgments occur in the selection of critical studies, internal dose metrics, pharmacokinetic models, approaches for interspecies extrapolation of pharmacodynamics, and uncertainty factors. Potentially limiting end points included developmental eye malformations, liver effects, immunotoxicity, and kidney toxicity from oral exposure and neurological, liver, and kidney effects by inhalation. Each end point was evaluated quantitatively using several methods. Default analyses used the traditional no-observed adverse effect level divided by uncertainty factors and the benchmark dose divided by uncertainty factors methods. Subsequently, mode-of-action and pharmacokinetic information were incorporated. Internal dose metrics were estimated using a physiologically based pharmacokinetic (PBPK) model for TCE and its major metabolites. This approach was notably useful with neurological and kidney toxicities. The human PBPK model provided estimates of human exposure doses for the internal dose metrics. Pharmacodynamic data or default assumptions were used for interspecies extrapolation. For liver and neurological effects, humans appear no more sensitive than rodents when internal dose metrics were considered. Therefore, the interspecies uncertainty factor was reduced, illustrating that uncertainty factors are a semiquantitative approach fitting into the organizational framework. Incorporation of pharmacokinetics and pharmacodynamics can result in values that differ significantly from those obtained with the default methods.
منابع مشابه
Trichloroethylene health risks--state of the science.
This monograph comprises 16 articles on the state of the science regarding health risks of trichloroethylene (TCE) that were sponsored by the U.S. Environmental Protection Agency (U.S. EPA), the U.S. Air Force, the U.S. Department of Energy, the National Institute of Environmental Health Sciences, and the Halogenated Solvents Industry Alliance in support of the U.S. EPA trichloroethylene risk a...
متن کاملA consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment.
Physiologically based pharmacokinetic modeling provides important capabilities for improving the reliability of the extrapolations across dose, species, and exposure route that are generally required in chemical risk assessment regardless of the toxic end point being considered. Recently, there has been an increasing focus on harmonization of the cancer and noncancer risk assessment approaches ...
متن کاملUse of mode of action in risk assessment: past, present, and future.
The evolution of chemical risk assessment has been marked by a steadily increasing expectation for the use of chemical-specific dosimetric and mechanistic information to tailor the risk assessment approach. The information to be used can range from the broad physical properties of the chemical to detailed information on the mechanism by which it causes a particular toxic outcome, and the risk a...
متن کاملLessons learned in applying the U.S. EPA proposed cancer guidelines to specific compounds.
An expert panel was convened to evaluate the U.S. Environmental Protection Agency's "Proposed Guidelines for Carcinogen Risk Assessment" through their application to data sets for chloroform (CHCl3) and dichloroacetic acid (DCA). The panel also commented on perceived strengths and limitations encountered in applying the guidelines to these specific compounds. This latter aspect of the panel's a...
متن کاملSafety assessment of glycol recovery unit in a gas refinery by failure mode and effects analysis technique
Background: The reliability and safety of gas refineries are strongly associated with the reliability of other parts of the system. Defect and failure in one part of a system can cause total system breakdown or accident. The failure and damage in these equipment such as transformers and boilers results in not only the equipment damage and human injuries but also productivity reduction. The purp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 108 شماره
صفحات -
تاریخ انتشار 2000